enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The expression ″thin″ indicates that the shell thickness is negligible. It is a special case of the thick-walled cylindrical tube of the same mass for r 1 = r 2. Also, a point mass m at the end of a rod of length r has this same moment of inertia and the value r is called the radius of gyration. Solid cylinder of radius r, height h and mass m.

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...

  4. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    The moment of inertia is measured in kilogram metre² (kg m 2). It depends on the object's mass: increasing the mass of an object increases the moment of inertia. It also depends on the distribution of the mass: distributing the mass further from the center of rotation increases the moment of inertia by a greater degree.

  5. Moment (physics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(physics)

    The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.

  6. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.

  7. Second polar moment of area - Wikipedia

    en.wikipedia.org/wiki/Second_polar_moment_of_area

    The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation , in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    r cm is the position vector of the center of mass of the body with respect to the point about which moments are summed, a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass.

  9. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    Assuming the mass of the torsion beam itself is negligible, the moment of inertia of the balance is just due to the small balls. Treating them as point masses, each at L/2 from the axis, gives: Treating them as point masses, each at L/2 from the axis, gives: