enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    Propagation of a ray through a layer. The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.

  3. Monte Carlo method for photon transport - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method_for...

    Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.

  4. Method of moments (electromagnetics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments...

    Simulation of negative refraction from a metasurface at 15 GHz for different angles of incidence. The simulations are performed through the method of moments. The method of moments (MoM), also known as the moment method and method of weighted residuals, [1] is a numerical method in computational electromagnetics.

  5. Fast marching method - Wikipedia

    en.wikipedia.org/wiki/Fast_marching_method

    The fast marching method [1] is a numerical method created by James Sethian for solving boundary value problems of the Eikonal equation: | | = / () =Typically, such a problem describes the evolution of a closed surface as a function of time with speed in the normal direction at a point on the propagating surface.

  6. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    Here are given examples of Fraunhofer diffraction with a normally incident monochromatic plane wave. In each case, the diffracting object is located in the z = 0 plane, and the complex amplitude of the incident plane wave is given by A ( x ′ , y ′ ) = a e i 2 π c t / λ = a e i k c t {\displaystyle A(x',y')=ae^{i2\pi ct/\lambda }=ae^{ikct ...

  7. Hata model - Wikipedia

    en.wikipedia.org/wiki/Hata_model

    The Hata model is a radio propagation model for predicting the path loss of cellular transmissions in exterior environments, valid for microwave frequencies from 150 to 1500 MHz. It is an empirical formulation based on the data from the Okumura model , and is thus also commonly referred to as the Okumura–Hata model . [ 1 ]

  8. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  9. Longley–Rice model - Wikipedia

    en.wikipedia.org/wiki/Longley–Rice_model

    The Longley–Rice model (LR) is a radio propagation model: a method for predicting the attenuation of radio signals for a telecommunication link in the frequency range of 40 MHz to 100 GHz. [1] Longley-Rice is also known as the irregular terrain model (ITM).