Search results
Results from the WOW.Com Content Network
Another characterization is that a finite p-group in which there is a unique subgroup of order p is either cyclic or a 2-group isomorphic to generalized quaternion group. [13] In particular, for a finite field F with odd characteristic, the 2-Sylow subgroup of SL 2 ( F ) is non-abelian and has only one subgroup of order 2, so this 2-Sylow ...
Thus the multiplicative group of nonzero quaternions acts by conjugation on the copy of consisting of quaternions with real part equal to zero. Conjugation by a unit quaternion (a quaternion of absolute value 1) with real part cos( φ ) is a rotation by an angle 2 φ , the axis of the rotation being the direction of the vector part.
In mathematics, a quaternionic structure or Q-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field.. A quaternionic structure is a triple (G, Q, q) where G is an elementary abelian group of exponent 2 with a distinguished element −1, Q is a pointed set with distinguished element 1, and q is a symmetric surjection G×G → Q satisfying axioms
The other is the quaternion group for p = 2 and a group of exponent p for p > 2. Order p 4 : The classification is complicated, and gets much harder as the exponent of p increases. Most groups of small order have a Sylow p subgroup P with a normal p -complement N for some prime p dividing the order, so can be classified in terms of the possible ...
The character table does not in general determine the group up to isomorphism: for example, the quaternion group Q and the dihedral group of 8 elements, D 4, have the same character table. Brauer asked whether the character table, together with the knowledge of how the powers of elements of its conjugacy classes are distributed, determines a ...
Cayley Q8 graph of quaternion multiplication showing cycles of multiplication of i (red), j (green) and k (blue). In the SVG file, hover over or click a path to highlight it. All of the Clifford algebras Cl p , q ( R {\displaystyle \mathbb {R} } ) apart from the real numbers, complex numbers and the quaternions contain non-real elements that ...
For example, it was used (implicitly) in 1947 by P. G. Gormley to extend the Möbius group to the quaternion context with linear fractional transformations. For the linear fractional transformations of an associative ring with 1, see projective line over a ring and the homography group GL(2,A).
A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations: