enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers. The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ 0, | x | → 0. The way of passing to the limit is often not stated explicitly, if it is clear from the context.

  3. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In analytic geometry, an asymptote (/ ˈ æ s ɪ m p t oʊ t /) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity ...

  4. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    In those limits, the number of equations usually decreases, their order reduces, nonlinear equations can be replaced by linear ones, the initial system becomes averaged in a certain sense, and so on. All these idealizations, different as they may seem, increase the degree of symmetry of the mathematical model of the phenomenon under consideration.

  5. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the ...

  6. Asymptotic distribution - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_distribution

    The central limit theorem gives only an asymptotic distribution. As an approximation for a finite number of observations, it provides a reasonable approximation only when close to the peak of the normal distribution; it requires a very large number of observations to stretch into the tails.

  7. Interchange of limiting operations - Wikipedia

    en.wikipedia.org/wiki/Interchange_of_limiting...

    Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.

  8. Asymptotic expansion - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_expansion

    In other words, a sequence of functions is an asymptotic scale if each function in the sequence grows strictly slower (in the limit ) than the preceding function. If f {\displaystyle \ f\ } is a continuous function on the domain of the asymptotic scale, then f has an asymptotic expansion of order N {\displaystyle \ N\ } with respect to the ...

  9. Asymptotic theory (statistics) - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_theory_(statistics)

    In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests.Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞.