Search results
Results from the WOW.Com Content Network
The terms sensible heat and latent heat refer to energy transferred between a body and its surroundings, defined by the occurrence or non-occurrence of temperature change; they depend on the properties of the body. Sensible heat is sensed or felt in a process as a change in the body's temperature.
2.4 Statistical physics. ... Latent heat: Q L: J ML 2 T −2: General derived quantities. ... Coefficients Equation Joule-Thomson coefficient
In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...
The Bowen ratio is calculated by the equation: =, where is sensible heating and is latent heating. In this context, when the magnitude of is less than one, a greater proportion of the available energy at the surface is passed to the atmosphere as latent heat than as sensible heat, and the converse is true for values of greater than one.
The energy needed to evaporate the water is taken from the air in the form of sensible heat and converted into latent heat, while the air remains at a constant enthalpy. Latent heat describes the amount of heat that is needed to evaporate the liquid; this heat comes from the liquid itself and the surrounding gas and surfaces.
Only one equation of state will not be sufficient to reconstitute the fundamental equation. All equations of state will be needed to fully characterize the thermodynamic system. Note that what is commonly called "the equation of state" is just the "mechanical" equation of state involving the Helmholtz potential and the volume:
Formulas and correlations are available in many references to calculate heat transfer coefficients for typical configurations and fluids. For laminar flows, the heat transfer coefficient is usually smaller than in turbulent flows because turbulent flows have strong mixing within the boundary layer on the heat transfer surface. [6]
The latent heat with respect to volume can also be called the 'latent energy with respect to volume'. For all of these usages of 'latent heat', a more systematic terminology uses 'latent heat capacity'. The heat capacity at constant volume is the heat required for unit increment in temperature at constant volume.