Search results
Results from the WOW.Com Content Network
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...
For example, the word "encyclopedia" is a sequence of symbols in the English alphabet, a finite set of twenty-six letters. Since a word can be described as a sequence, other basic mathematical descriptions can be applied. The alphabet is a set, so as one would expect, the empty set is a subset. In other words, there exists a unique word of ...
A word n-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. [1] It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words.
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
Two of the problems are trivial (the number of equivalence classes is 0 or 1), five problems have an answer in terms of a multiplicative formula of n and x, and the remaining five problems have an answer in terms of combinatorial functions (Stirling numbers and the partition function for a given number of parts).
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Two examples of this type of problem are counting combinations and counting permutations. More generally, given an infinite collection of finite sets S i indexed by the natural numbers , enumerative combinatorics seeks to describe a counting function which counts the number of objects in S n for each n .
For example, if x, y and z are elements of a group G, then xy, z −1 xzz and y −1 zxx −1 yz −1 are words in the set {x, y, z}. Two different words may evaluate to the same value in G, [1] or even in every group. [2] Words play an important role in the theory of free groups and presentations, and are central objects of study in ...