Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of independent samples, any highly implausible (i.e. unlikely in any single sample, but with constant probability strictly greater than 0 in any sample) result is likely to be observed. [1]
Counterexamples in Probability and Statistics is a mathematics book by Joseph P. Romano and Andrew F. Siegel. It began as Romano's senior thesis at Princeton University under Siegel's supervision, and was intended for use as a supplemental work to augment standard textbooks on statistics and probability theory.
Counterexamples in Probability is a mathematics book by Jordan M. Stoyanov. Intended to serve as a supplemental text for classes on probability theory and related topics, it covers cases where a mathematical proposition might seem to be true but actually turns out to be false.
The "rate function" on the other hand measures the probability of appearance of a particular macro-state. The smaller the rate function the higher is the chance of a macro-state appearing. In our coin-tossing the value of the "rate function" for mean value equal to 1/2 is zero.
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
The cover page of Ars Conjectandi. Ars Conjectandi (Latin for "The Art of Conjecturing") is a book on combinatorics and mathematical probability written by Jacob Bernoulli and published in 1713, eight years after his death, by his nephew, Niklaus Bernoulli.