Search results
Results from the WOW.Com Content Network
The two families of lines on a smooth (split) quadric surface. In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine ...
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
Because they satisfy a quadratic constraint, they establish a one-to-one correspondence between the 4-dimensional space of lines in and points on a quadric in (projective 5-space). A predecessor and special case of Grassmann coordinates (which describe k -dimensional linear subspaces, or flats , in an n -dimensional Euclidean ...
Attempting to rotate a QGA quadric surface may result in a different type of quadric surface, or a quadric surface that is rotated and distorted in an unexpected way. Attempting to rotate a QGA point may produce a value that projects as the expected rotated vector, but the produced value is generally not a correct embedding of the rotated vector.
It is an easy task to determine the intersection points of a line with a quadric (i.e. line-sphere); one only has to solve a quadratic equation. So, any intersection curve of a cone or a cylinder (they are generated by lines) with a quadric consists of intersection points of lines and the quadric (see pictures).
The 3-space, S, can be reconstructed again from the quadric, Q: the planes contained in Q fall into two equivalence classes, where planes in the same class meet in a point, and planes in different classes meet in a line or in the empty set. Let these classes be C and C′. The geometry of S is retrieved as follows: The points of S are the ...
A (general) conical surface is the unbounded surface formed by the union of all the straight lines that pass through a fixed point — the apex or vertex — and any point of some fixed space curve — the directrix — that does not contain the apex. Each of those lines is called a generatrix of the surface.
For more examples see the list of algebraic surfaces. The first five examples are in fact birationally equivalent. That is, for example, a cubic surface has a function field isomorphic to that of the projective plane, being the rational functions in two indeterminates. The Cartesian product of two curves also provides examples.