enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.

  3. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  4. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    and the formula for the area A of a circular sector of radius r and with central angle of ... the equation of a circle is ... (x 1, y 1) and the circle has centre ...

  5. Centroid - Wikipedia

    en.wikipedia.org/wiki/Centroid

    The same formula holds for any three-dimensional objects, except that each should be the volume of , rather than its area. It also holds for any subset of R d , {\displaystyle \mathbb {R} ^{d},} for any dimension d , {\displaystyle d,} with the areas replaced by the d {\displaystyle d} -dimensional measures of the parts.

  6. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that

  7. Circular segment - Wikipedia

    en.wikipedia.org/wiki/Circular_segment

    The arc length, from the familiar geometry of a circle, is s = θ R {\displaystyle s={\theta }R} The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of θ {\displaystyle \theta } ):

  8. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ⁠ ^, ⁠ one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ⁠ ^ ⁠ is the following:

  9. Centre (geometry) - Wikipedia

    en.wikipedia.org/wiki/Centre_(geometry)

    The centre of a circle is the point equidistant from the points on the edge. Similarly the centre of a sphere is the point equidistant from the points on the surface, and the centre of a line segment is the midpoint of the two ends.