Search results
Results from the WOW.Com Content Network
The Luhn mod N algorithm generates a check digit (more precisely, a check character) within the same range of valid characters as the input string. For example, if the algorithm is applied to a string of lower-case letters (a to z), the check character will also be a lower-case letter. Apart from this distinction, it resembles very closely the ...
Java (string-length string) Scheme (length string) Common Lisp, ISLISP (count string) Clojure: String.length string: OCaml: size string: Standard ML: length string: Number of Unicode code points Haskell: string.length: Number of UTF-16 code units Objective-C (NSString * only) string.characters.count: Number of characters Swift (2.x) count ...
The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string. The character '|' is inserted between every character in the inputs string, and at both ends. So the input "book" becomes "|b|o|o|k|".
Both character termination and length codes limit strings: For example, C character arrays that contain null (NUL) characters cannot be handled directly by C string library functions: Strings using a length code are limited to the maximum value of the length code. Both of these limitations can be overcome by clever programming.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z.
Ukkonen's 1985 algorithm takes a string p, called the pattern, and a constant k; it then builds a deterministic finite state automaton that finds, in an arbitrary string s, a substring whose edit distance to p is at most k [13] (cf. the Aho–Corasick algorithm, which similarly constructs an automaton to search for any of a number of patterns ...
The second case reduces to the first by splitting the string at the split point to create two new leaf nodes, then creating a new node that is the parent of the two component strings. For example, to split the 22-character rope pictured in Figure 2.3 into two equal component ropes of length 11, query the 12th character to locate the node K at ...