enow.com Web Search

  1. Ads

    related to: absolute value inequalities example problems pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Estimation lemma - Wikipedia

    en.wikipedia.org/wiki/Estimation_lemma

    In mathematics the estimation lemma, also known as the ML inequality, gives an upper bound for a contour integral. If f is a complex -valued, continuous function on the contour Γ and if its absolute value | f ( z ) | is bounded by a constant M for all z on Γ , then

  3. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).

  4. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [18] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  5. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin.

  6. Fatou–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Fatou–Lebesgue_theorem

    The second inequality is the elementary inequality between and . The last inequality follows by applying reverse Fatou lemma , i.e. applying the Fatou lemma to the non-negative functions g − f n {\displaystyle g-f_{n}} , and again (up to sign) cancelling the finite ∫ X g d μ {\displaystyle \int _{X}g\,d\mu } term.

  7. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality. As a simple example, consider real numbers : By applying with := for all =, …,, it follows that + + + + + + for every permutation of , …,.

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  9. Markov's inequality - Wikipedia

    en.wikipedia.org/wiki/Markov's_inequality

    Markov's inequality (and other similar inequalities) relate probabilities to expectations, and provide (frequently loose but still useful) bounds for the cumulative distribution function of a random variable. Markov's inequality can also be used to upper bound the expectation of a non-negative random variable in terms of its distribution function.

  1. Ads

    related to: absolute value inequalities example problems pdf