Ad
related to: absolute value inequalities example problems with solutions
Search results
Results from the WOW.Com Content Network
where , is the inner product.Examples of inner products include the real and complex dot product; see the examples in inner product.Every inner product gives rise to a Euclidean norm, called the canonical or induced norm, where the norm of a vector is denoted and defined by ‖ ‖:= , , where , is always a non-negative real number (even if the inner product is complex-valued).
The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...
In mathematics the estimation lemma, also known as the ML inequality, gives an upper bound for a contour integral. If f is a complex -valued, continuous function on the contour Γ and if its absolute value | f ( z ) | is bounded by a constant M for all z on Γ , then
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
(Note that the directions of the inequalities are reversed from those in the additive notation.) If Γ is a subgroup of the positive real numbers under multiplication, the last condition is the ultrametric inequality, a stronger form of the triangle inequality |a+b| v ≤ |a| v + |b| v, and | ⋅ | v is an absolute value.
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality. As a simple example, consider real numbers : By applying with := for all =, …,, it follows that + + + + + + for every permutation of , …,.
Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution
Ad
related to: absolute value inequalities example problems with solutions