enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nitrogen - Wikipedia

    en.wikipedia.org/wiki/Nitrogen

    Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System.

  3. Isotopes of nitrogen - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_nitrogen

    Nitrogen-14 is one of the very few stable nuclides with both an odd number of protons and of neutrons (seven each) and is the only one to make up a majority of its element. Each proton or neutron contributes a nuclear spin of plus or minus spin 1/2 , giving the nucleus a total magnetic spin of one.

  4. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Of the 251 known stable nuclides, only four have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, and nitrogen-14. (Tantalum-180m is odd-odd and observationally stable, but is predicted to decay with a very long half-life.)

  5. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not ⁠ 1 / 2 ⁠ e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)

  6. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    A small amount of energy may also emerge in the form of X-rays. Generally, the product nucleus has a different atomic number, and thus the configuration of its electron shells is wrong. As the electrons rearrange themselves and drop to lower energy levels, internal transition X-rays (X-rays with precisely defined emission lines) may be emitted.

  7. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The atomic binding energy is simply the amount of energy (and mass) released, when a collection of free nucleons are joined to form a nucleus. Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus.

  8. Charge number - Wikipedia

    en.wikipedia.org/wiki/Charge_number

    The charge number equals the electric charge (q, in coulombs) divided by the elementary charge: z = q/e. Atomic numbers (Z) are a special case of charge numbers, referring to the charge number of an atomic nucleus, as opposed to the net charge of an atom or ion. The charge numbers for ions (and also subatomic particles) are written in ...

  9. Core electron - Wikipedia

    en.wikipedia.org/wiki/Core_electron

    Core charge can be calculated by taking the number of protons in the nucleus minus the number of core electrons, also called inner shell electrons, and is always a positive value in neutral atoms. The mass of the core is almost equal to the mass of the atom. The atomic core can be considered spherically symmetric with sufficient accuracy.