enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Capillary action - Wikipedia

    en.wikipedia.org/wiki/Capillary_action

    Capillary action of water (polar) compared to mercury (non-polar), in each case with respect to a polar surface such as glass (≡Si–OH). Capillary action (sometimes called capillarity, capillary motion, capillary rise, capillary effect, or wicking) is the process of a liquid flowing in a narrow space without the assistance of external forces like gravity.

  3. Capillary wave - Wikipedia

    en.wikipedia.org/wiki/Capillary_wave

    Capillary waves (ripples) in water Ripples on Lifjord in Øksnes Municipality, Norway Capillary waves produced by droplet impacts on the interface between water and air. A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension. Capillary waves are ...

  4. Capillary pressure - Wikipedia

    en.wikipedia.org/wiki/Capillary_pressure

    In Beskow’s studies, he defined this soil moisture tension as “capillary pressure” (and soil water as “capillary water”). Beskow determined that the soil type and effective stress on the soil particles influenced frost heave, where effective stress is the sum of pressure from above ground and the capillary pressure. [18]

  5. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    For a water–air interface (with σ = 0.074 N/m and ρ = 1000 kg/m 3) the waves can be approximated as pure capillary waves – dominated by surface-tension effects – for wavelengths less than 0.4 cm (0.2 in).

  6. Jurin's law - Wikipedia

    en.wikipedia.org/wiki/Jurin's_Law

    Capillary action is one of the most common fluid mechanical effects explored in the field of microfluidics. Jurin's law is named after James Jurin, who discovered it between 1718 and 1719. [2] His quantitative law suggests that the maximum height of liquid in a capillary tube is inversely proportional to the tube's diameter.

  7. Water potential - Wikipedia

    en.wikipedia.org/wiki/Water_potential

    Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).

  8. Pore water pressure - Wikipedia

    en.wikipedia.org/wiki/Pore_water_pressure

    Capillary effects in soil are more complex than in free water due to the randomly connected void space and particle interference through which to flow; regardless, the height of this zone of capillary rise, where negative pore water pressure is generally peaks, can be closely approximated by a simple equation.

  9. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.