Search results
Results from the WOW.Com Content Network
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Once the message has been sent, becomes the process , while () becomes the process [/], which is with the place-holder substituted by , the data received on . The class of processes that P {\displaystyle {\mathit {P}}} is allowed to range over as the continuation of the output operation substantially influences the properties of the calculus.
In computer science, communicating sequential processes (CSP) is a formal language for describing patterns of interaction in concurrent systems. [1] It is a member of the family of mathematical theories of concurrency known as process algebras, or process calculi, based on message passing via channels.
An early computer-based PRNG, suggested by John von Neumann in 1946, is known as the middle-square method. The algorithm is as follows: take any number, square it, remove the middle digits of the resulting number as the "random number", then use that number as the seed for the next iteration.
Communications Electronics Security Group. Archived (PDF) from the original on 2004-07-19; The History of Non-Secret Encryption JH Ellis 1987 (28K PDF file) (HTML version) The First Ten Years of Public-Key Cryptography Whitfield Diffie, Proceedings of the IEEE, vol. 76, no. 5, May 1988, pp: 560–577 (1.9MB PDF file)
The outcome of this process was the adoption of Adam Langley's proposal for a variant of the original ChaCha20 algorithm (using 32-bit counter and 96-bit nonce) and a variant of the original Poly1305 (authenticating 2 strings) being combined in an IETF draft [5] [6] to be used in TLS and DTLS, [7] and chosen, for security and performance ...