Search results
Results from the WOW.Com Content Network
A variable in an experiment which is held constant in order to assess the relationship between multiple variables [a], is a control variable. [2] [3] A control variable is an element that is not changed throughout an experiment because its unchanging state allows better understanding of the relationship between the other variables being tested ...
This is typically done so that the variable can no longer act as a confounder in, for example, an observational study or experiment. When estimating the effect of explanatory variables on an outcome by regression, controlled-for variables are included as inputs in order to separate their effects from the explanatory variables. [1]
A variable may be thought to alter the dependent or independent variables, but may not actually be the focus of the experiment. So that the variable will be kept constant or monitored to try to minimize its effect on the experiment. Such variables may be designated as either a "controlled variable", "control variable", or "fixed variable".
The same is true for intervening variables (a variable in between the supposed cause (X) and the effect (Y)), and anteceding variables (a variable prior to the supposed cause (X) that is the true cause). When a third variable is involved and has not been controlled for, the relation is said to be a zero order relationship. In most practical ...
A scientific control is an experiment or observation designed to minimize the effects of variables other than the independent variable (i.e. confounding variables). [1] This increases the reliability of the results, often through a comparison between control measurements and the other measurements. Scientific controls are a part of the ...
Proportional control, in engineering and process control, is a type of linear feedback control system in which a correction is applied to the controlled variable, and the size of the correction is proportional to the difference between the desired value (setpoint, SP) and the measured value (process variable, PV).
When the expectation of the control variable, [] =, is not known analytically, it is still possible to increase the precision in estimating (for a given fixed simulation budget), provided that the two conditions are met: 1) evaluating is significantly cheaper than computing ; 2) the magnitude of the correlation coefficient |, | is close to unity.
Departure of such a variable from its setpoint is one basis for error-controlled regulation using negative feedback for automatic control. [3] A setpoint can be any physical quantity or parameter that a control system seeks to regulate, such as temperature, pressure, flow rate, position, speed, or any other measurable attribute.