enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Millman's theorem - Wikipedia

    en.wikipedia.org/wiki/Millman's_theorem

    In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel .

  3. Series and parallel circuits - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_circuits

    In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...

  4. Parallel (operator) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(operator)

    Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...

  5. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    The lower the parallel resistance is, the more effect it will have in damping the circuit and thus result in lower Q. This is useful in filter design to determine the bandwidth. In a parallel LC circuit where the main loss is the resistance of the inductor, R, in series with the inductance, L, Q is as in the series circuit

  6. RLC circuit - Wikipedia

    en.wikipedia.org/wiki/RLC_circuit

    Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.

  7. Equivalent impedance transforms - Wikipedia

    en.wikipedia.org/wiki/Equivalent_impedance...

    These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...

  8. Output impedance - Wikipedia

    en.wikipedia.org/wiki/Output_impedance

    This impedance can be imagined as an impedance in series with an ideal voltage source, or in parallel with an ideal current source (see: Series and parallel circuits). Sources are modeled as ideal sources (ideal meaning sources that always keep the desired value) combined with their output impedance.

  9. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response. Norton's theorem was independently derived in 1926 by Siemens & Halske researcher Hans Ferdinand Mayer (1895–1980) and Bell Labs engineer Edward Lawry Norton (1898–1983).