enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Alternatively, the identities found at Trigonometric symmetry, shifts, and periodicity may be employed. By the periodicity identities we can say if the formula is true for −π < θ ≤ π then it is true for all real θ. Next we prove the identity in the range π/2 < θ ≤ π, to do this we let t = θ − π/2, t will now be in the range 0 ...

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Proof of the sum-and-difference-to-product cosine identity for prosthaphaeresis calculations using an isosceles triangle. The product-to-sum identities [28] or prosthaphaeresis formulae can be proven by expanding their right-hand sides using the angle addition theorems.

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: ⁡ + ⁡ = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of ⁡ + ⁡ = by ⁡; for the second, divide by ⁡.

  5. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  6. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Trigonometric identities mnemonic. Another mnemonic permits all of the basic identities to be read off quickly. The hexagonal chart can be constructed with a little thought: [10] Draw three triangles pointing down, touching at a single point. This resembles a fallout shelter trefoil. Write a 1 in the middle where the three triangles touch

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    A fundamental feature of the proof is the accumulation of the subtrahends into a unit fraction, that is, = for , thus = + rather than = | |, where the extrema of are [,] if = and [,] otherwise, with the minimum of being implicit in the latter case due to the structural requirements of the proof.

  8. Rogers–Ramanujan identities - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan_identities

    The identities were first discovered and proved by Leonard James Rogers , and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913. Ramanujan had no proof, but rediscovered Rogers's paper in 1917, and they then published a joint new proof ( Rogers & Ramanujan 1919 ).

  9. List of mathematical identities - Wikipedia

    en.wikipedia.org/.../List_of_mathematical_identities

    This article lists mathematical identities, that is, identically true relations holding in mathematics. Bézout's identity (despite its usual name, it is not, properly speaking, an identity) Binet-cauchy identity