Search results
Results from the WOW.Com Content Network
The soil response for each pile segment is modeled as viscoelastic-plastic. The method was first developed in the 1950s by E.A. Smith of the Raymond Pile Driving Company. Wave equation analysis of piles has seen many improvements since the 1950s such as including a thermodynamic diesel hammer model and residual stress. Commercial software ...
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
The coefficient of friction is determined by the ratio of the frictional force to the loading force on the pin. The pin on disc test has proved useful in providing a simple wear and friction test for low friction coatings such as diamond-like carbon coatings on valve train components in internal combustion engines.
The tilt-angle equals the material friction of the discontinuity wall plus the roughness i-angle (tilt-angle = φ wall material + i) if no real cohesion is present (i.e. no cementing or gluing material between the two blocks), no infill material is present, the asperities do not break, and the walls of the discontinuity are completely fitting at the start of the test, while if the walls of the ...
Dynamic load testing (or dynamic loading) is a method to assess a pile's bearing capacity by applying a dynamic load to the pile head (a falling mass) while recording acceleration and strain on the pile head. Dynamic load testing is a high strain dynamic test which can be applied after pile installation for concrete piles. For steel or timber ...
The Statnamic load test is a type of test for assessing the load-carrying capacity of deep foundations which is faster and less expensive than the static load test.The Statnamic test was conceived in 1985, with the first prototype tests carried out in 1988 through collaboration between Berminghammer Foundation Equipment of Canada and TNO Building Research of the Netherlands.
Static load testing is an in situ type of load testing used in geotechnical investigation to determine the bearing capacity of deep foundations prior to the construction of a building. It differs from the statnamic load test and dynamic load testing in that the pressure applied to the pile is slower.
Dynamic load testing takes a further step in analyzing the data and computing static capacity and resistance distribution. Dynamic pile monitoring takes advantage of the fact that, for driven piles, it is possible to compute the energy delivered to the pile, compression stresses at the pile top and toe and tension stresses along the shaft.