enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Myosin head - Wikipedia

    en.wikipedia.org/wiki/Myosin_head

    The myosin head is the part of the thick myofilament made up of myosin that acts in muscle contraction, by sliding over thin myofilaments of actin.Myosin is the major component of the thick filaments and most myosin molecules are composed of a head, neck, and tail domain; the myosin head binds to thin filamentous actin, and uses ATP hydrolysis to generate force and "walk" along the thin filament.

  3. Myosin - Wikipedia

    en.wikipedia.org/wiki/Myosin

    Each of these heavy chains contains the N-terminal head domain, while the C-terminal tails take on a coiled-coil morphology, holding the two heavy chains together (imagine two snakes wrapped around each other, as in a caduceus). Thus, myosin II has two heads. The intermediate neck domain is the region creating the angle between the head and ...

  4. Motor protein - Wikipedia

    en.wikipedia.org/wiki/Motor_protein

    Myosin II is an elongated protein that is formed from two heavy chains with motor heads and two light chains. Each myosin head contains actin and ATP binding site. The myosin heads bind and hydrolyze ATP, which provides the energy to walk toward the plus end of an actin filament. Myosin II are also vital in the process of cell division. For ...

  5. Sliding filament theory - Wikipedia

    en.wikipedia.org/wiki/Sliding_filament_theory

    Cross-bridge theory states that actin and myosin form a protein complex (classically called actomyosin) by attachment of myosin head on the actin filament, thereby forming a sort of cross-bridge between the two filaments. The sliding filament theory is a widely accepted explanation of the mechanism that underlies muscle contraction.

  6. Myofilament - Wikipedia

    en.wikipedia.org/wiki/Myofilament

    The thick filament, myosin, has a double-headed structure, with the heads positioned at opposite ends of the molecule. During muscle contraction, the heads of the myosin filaments attach to oppositely oriented thin filaments, actin, and pull them past one another. The action of myosin attachment and actin movement results in sarcomere shortening.

  7. Myofibril - Wikipedia

    en.wikipedia.org/wiki/Myofibril

    The myosin head now binds to the actin myofilament. Energy in the head of the myosin myofilament moves the head, which slides the actin past; hence ADP is released. ATP presents itself (as the presence of the calcium ions activates the myosin's ATPase), and the myosin heads disconnect from the actin to grab the ATP.

  8. Muscular system - Wikipedia

    en.wikipedia.org/wiki/Muscular_system

    Myosin filaments have club-shaped myosin heads that project toward the actin filaments, [1] [3] [5] and provide attachment points on binding sites for the actin filaments. The myosin heads move in a coordinated style; they swivel toward the center of the sarcomere, detach and then reattach to the nearest active site of the actin filament.

  9. Unconventional myosin-VI - Wikipedia

    en.wikipedia.org/wiki/Unconventional_myosin-VI

    Human myosin-VI contains a N-terminal myosin head domain (residues 59–759), two coiled coil motifs (residues 902–984 and 986–1009 respectively), and a C-terminal myosin VI cargo binding domain (residues 1177–1267).