Search results
Results from the WOW.Com Content Network
The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.It provides the fundamental solution [3] φ(x,t) to
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
In the context of the quantum harmonic oscillator, one reinterprets the ladder operators as creation and annihilation operators, adding or subtracting fixed quanta of energy to the oscillator system. Creation/annihilation operators are different for bosons (integer spin) and fermions (half-integer spin).
The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2] For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook [3]). The coherent state describes a state ...
The linear response function for a harmonic oscillator is mathematically identical to that of an RLC circuit. The width of the maximum, Δ ω , {\displaystyle \Delta \omega ,} typically is much smaller than ω 0 , {\displaystyle \omega _{0},} so that the Quality factor Q := ω 0 / Δ ω {\displaystyle Q:=\omega _{0}/\Delta \omega } can be ...
However, if some radial velocity is introduced, these orbits need not be stable (i.e., remain in orbit indefinitely) nor closed (repeatedly returning to exactly the same path). Here we show that a necessary condition for stable, exactly closed non-circular orbits is an inverse-square force or radial harmonic oscillator potential.