Search results
Results from the WOW.Com Content Network
1.1 Parity byte or parity word. 1.2 Sum complement. 1.3 Position-dependent. ... The checksum algorithms most used in practice, such as Fletcher's checksum, ...
The Fletcher checksum cannot distinguish between blocks of all 0 bits and blocks of all 1 bits. For example, if a 16-bit block in the data word changes from 0x0000 to 0xFFFF, the Fletcher-32 checksum remains the same. This also means a sequence of all 00 bytes has the same checksum as a sequence (of the same size) of all FF bytes.
Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits
cksum is a command in Unix and Unix-like operating systems that generates a checksum value for a file or stream of data. The cksum command reads each file given in its arguments, or standard input if no arguments are provided, and outputs the file's 32-bit cyclic redundancy check (CRC) checksum and byte count. [1]
For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is set to 1 making the total count of 1s in the whole set (including the parity bit) an odd number. If the count of bits with a value of 1 is odd, the count is already odd so the parity bit's value is 0.
An Adler-32 checksum is obtained by calculating two 16-bit checksums A and B and concatenating their bits into a 32-bit integer. A is the sum of all bytes in the stream plus one, and B is the sum of the individual values of A from each step.
The Internet checksum, [1] [2] also called the IPv4 header checksum is a checksum used in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is carried in the IP packet header , and represents the 16-bit result of summation of the header words.
The prefix checksum is the 8-bit sum of the four-bit hexadecimal value of the six digits that make up the address and byte count. Data— contains the data to be transferred, followed by a 2 character (1 byte) checksum. The data checksum is the 8-bit sum, modulo 256, of the 4-bit hexadecimal values of the digits that make up the data bytes. [4] [2]