Search results
Results from the WOW.Com Content Network
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
Circle through exactly four points given by Schinzel's construction Schinzel proved this theorem by the following construction. If n {\displaystyle n} is an even number, with n = 2 k {\displaystyle n=2k} , then the circle given by the following equation passes through exactly n {\displaystyle n} points: [ 1 ] [ 2 ] ( x − 1 2 ) 2 + y 2 = 1 4 5 ...
Clausius theorem ; Clifford's circle theorems (Euclidean plane geometry) Clifford's theorem on special divisors (algebraic curves) Closed graph theorem (functional analysis) Closed range theorem (functional analysis) Cluster decomposition theorem (quantum field theory) Coase theorem ; Cochran's theorem
Circle theorem may refer to: Any of many theorems related to the circle; often taught as a group in GCSE mathematics. These include: Inscribed angle theorem. Thales' theorem, if A, B and C are points on a circle where the line AC is a diameter of the circle, then the angle ∠ABC is a right angle. Alternate segment theorem. Ptolemy's theorem.
A more substantial example is the graph minor theorem. A consequence of this theorem is that a graph can be drawn on the torus if, and only if, none of its minors belong to a certain finite set of "forbidden minors". However, the proof of the existence of this finite set is not constructive, and the forbidden minors are not actually specified. [6]
Conway's circle theorem as a special case of the generalisation, called "side divider theorem" (Villiers) or "windscreen wiper theorem" (Polster)) Conway's circle is a special case of a more general circle for a triangle that can be obtained as follows: Given any ABC with an arbitrary point P on line AB.
Whichever continuity is used in a proof of the Gerschgorin disk theorem, it should be justified that the sum of algebraic multiplicities of eigenvalues remains unchanged on each connected region. A proof using the argument principle of complex analysis requires no eigenvalue continuity of any kind. [1] For a brief discussion and clarification ...
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.