enow.com Web Search

  1. Ad

    related to: reflection rotation and translation examples worksheet 2

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3 ′. If q 2 is distinct from p 2 ′, bisect the angle at q 1 with a new mirror. With p 1 and p 2 now in place, p 3 is at p 3 ″; and if it is not in place, a final mirror through q 1 and q 2 will flip it to q 3. Thus at most three reflections suffice to reproduce any plane ...

  4. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections. Any object will keep the same shape and size after a proper rigid transformation. All rigid transformations are examples of affine transformations.

  5. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    A typical example of glide reflection in everyday life would be the track of footprints left in the sand by a person walking on a beach. Frieze group nr. 6 (glide-reflections, translations and rotations) is generated by a glide reflection and a rotation about a point on the line of reflection. It is isomorphic to a semi-direct product of Z and C 2.

  6. Point groups in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_two_dimensions

    This is because the conjugate of the translation by a glide reflection is the same as by the corresponding reflection: the translation vector is reflected. If the isometry group contains an n -fold rotation then the lattice has n -fold symmetry for even n and 2 n -fold for odd n .

  7. Template:Frieze group notations - Wikipedia

    en.wikipedia.org/wiki/Template:Frieze_group...

    The group is generated by a translation and a 180° rotation. p2mg [∞,2 +] D ∞d Dih ∞ 2*∞ spinning sidle (TRVG) Vertical reflection lines, Glide reflections, Translations and 180° Rotations: The translations here arise from the glide reflections, so this group is generated by a glide reflection and either a rotation or a vertical ...

  8. Conjugation of isometries in Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Conjugation_of_isometries...

    The conjugate closure of a singleton containing a rotation in 3D is E + (3). In 2D it is different in the case of a k-fold rotation: the conjugate closure contains k rotations (including the identity) combined with all translations. E(2) has quotient group O(2) / C k and E + (2) has quotient group SO(2) / C k. For k = 2 this was already covered ...

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    Translation is done by shearing parallel to the xy plane, and rotation is performed around the z axis. To represent affine transformations with matrices, we can use homogeneous coordinates. This means representing a 2-vector (x, y) as a 3-vector (x, y, 1), and similarly for higher dimensions. Using this system, translation can be expressed with ...

  1. Ad

    related to: reflection rotation and translation examples worksheet 2