enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anonymous function - Wikipedia

    en.wikipedia.org/wiki/Anonymous_function

    The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.

  3. Python syntax and semantics - Wikipedia

    en.wikipedia.org/wiki/Python_syntax_and_semantics

    In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:

  4. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...

  5. Closure (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Closure_(computer_programming)

    The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).

  6. Fixed-point combinator - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_combinator

    A function's identity is based on its implementation. A lambda calculus function (or term) is an implementation of a mathematical function. In the lambda calculus there are a number of combinators (implementations) that satisfy the mathematical definition of a fixed-point combinator.

  7. Anonymous recursion - Wikipedia

    en.wikipedia.org/wiki/Anonymous_recursion

    This creates a higher-order function, and passing this higher function itself allows anonymous recursion within the actual recursive function. This can be done purely anonymously by applying a fixed-point combinator to this higher order function. This is mainly of academic interest, particularly to show that the lambda calculus has recursion ...

  8. Functional programming - Wikipedia

    en.wikipedia.org/wiki/Functional_programming

    The lambda calculus, developed in the 1930s by Alonzo Church, is a formal system of computation built from function application.In 1937 Alan Turing proved that the lambda calculus and Turing machines are equivalent models of computation, [37] showing that the lambda calculus is Turing complete.

  9. Lambda function - Wikipedia

    en.wikipedia.org/wiki/Lambda_function

    Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane