Search results
Results from the WOW.Com Content Network
The stability of fixed points of a system of constant coefficient linear differential equations of first order can be analyzed using the eigenvalues of the corresponding matrix. An autonomous system ′ =, where x(t) ∈ R n and A is an n×n matrix with real entries, has a constant solution =
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set.
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C 1-small perturbations). Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods
The appearance or the disappearance of a periodic orbit through a local change in the stability properties of a fixed point is known as the Hopf bifurcation. The following theorem works for fixed points with one pair of conjugate nonzero purely imaginary eigenvalues. It tells the conditions under which this bifurcation phenomenon occurs.
However, such a fixed point interchanges its stability with another fixed point as the parameter is varied. [1] In other words, both before and after the bifurcation, there is one unstable and one stable fixed point. However, their stability is exchanged when they collide. So the unstable fixed point becomes stable and vice versa.
The standard example is the action of C * on the plane C 2 defined as (,) = (,).The weight in the x-direction is 1 and the weight in the y-direction is -1.Thus by the Hilbert–Mumford criterion, a non-zero point on the x-axis admits 1 as its only weight, and a non-zero point on the y-axis admits -1 as its only weight, so they are both unstable; a general point in the plane admits both 1 and ...
An orbit within the attractor follows an outward spiral close to the , plane around an unstable fixed point. Once the graph spirals out enough, a second fixed point influences the graph, causing a rise and twist in the -dimension. In the time domain, it becomes apparent that although each variable is oscillating within a fixed range of values ...
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.