enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nucleic acid double helix - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_double_helix

    In molecular biology, the term double helix [1] refers to the structure formed by double-stranded molecules of nucleic acids such as DNA. The double helical structure of a nucleic acid complex arises as a consequence of its secondary structure , and is a fundamental component in determining its tertiary structure .

  3. Nuclear DNA - Wikipedia

    en.wikipedia.org/wiki/Nuclear_DNA

    Nuclear DNA is a nucleic acid, a polymeric biomolecule or biopolymer, found in the nucleus of eukaryotic cells.Its structure is a double helix, with two strands wound around each other, a structure first described by Francis Crick and James D. Watson (1953) using data collected by Rosalind Franklin.

  4. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    In biology, parts of the DNA double helix that need to separate easily, such as the TATAAT Pribnow box in some promoters, tend to have a high AT content, making the strands easier to pull apart. [29] In the laboratory, the strength of this interaction can be measured by finding the melting temperature T m necessary to break half of the hydrogen ...

  5. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    By convention, if the base sequence of a single strand of DNA is given, the left end of the sequence is the 5′ end, while the right end of the sequence is the 3′ end. The strands of the double helix are anti-parallel, with one being 5′ to 3′, and the opposite strand 3′ to 5′.

  6. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    The double helix is an important tertiary structure in nucleic acid molecules which is intimately connected with the molecule's secondary structure. A double helix is formed by regions of many consecutive base pairs. The nucleic acid double helix is a spiral polymer, usually right-handed, containing two nucleotide strands which base pair together.

  7. Antiparallel (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Antiparallel_(biochemistry)

    The importance of an antiparallel DNA double helix structure is because of its hydrogen bonding between the complementary nitrogenous base pairs.If the DNA structure were to be parallel, the hydrogen bonding would not be possible, as the base pairs would not be paired in the known way. [4]

  8. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    The double helix is the dominant tertiary structure for biological DNA, and is also a possible structure for RNA. Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [2]

  9. Nucleotide base - Wikipedia

    en.wikipedia.org/wiki/Nucleotide_base

    Each of the base pairs in a typical double-helix DNA comprises a purine and a pyrimidine: either an A paired with a T or a C paired with a G. These purine-pyrimidine pairs, which are called base complements, connect the two strands of the helix and are often compared to the rungs of a ladder. Only pairing purine with pyrimidine ensures a ...