Search results
Results from the WOW.Com Content Network
Slab pull is a geophysical mechanism whereby the cooling and subsequent densifying of a subducting tectonic plate produces a downward force along the rest of the plate. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the many forces likely to be driving plate motion, slab pull was the strongest. [1]
This paradoxically results in divergence which was only incorporated in the theory of plate tectonics in 1970, but still results in net destruction when summed over major plate boundaries. [2] Divergent boundaries are areas where plates move away from each other, forming either mid-ocean ridges or rift valleys. These are also known as ...
The relative movement of the plates typically ranges from zero to 10 cm annually. Faults tend to be geologically active, experiencing earthquakes, volcanic activity, mountain-building, and oceanic trench formation. Tectonic plates are composed of the oceanic lithosphere and the thicker continental lithosphere, each topped by its own kind of crust.
Obduction often occurs where a small tectonic plate is caught between two larger plates, with the crust (both island arc and oceanic) welding onto an adjacent continent as a new terrane. When two continental plates collide, obduction of the oceanic crust between them is often a part of the resulting orogeny .
These processes are associated with large-scale movements of the Earth's crust (tectonic plates). [1] Folding, faulting, volcanic activity, igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building. [2] The formation of mountains is not necessarily related to the geological structures found on it. [3]
Extensional tectonics is associated with the stretching and thinning of the crust or the lithosphere.This type of tectonics is found at divergent plate boundaries, in continental rifts, during and after a period of continental collision caused by the lateral spreading of the thickened crust formed, at releasing bends in strike-slip faults, in back-arc basins, and on the continental end of ...
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
A tectonic phase or deformation phase is in structural geology and petrology a phase in which tectonic movement or metamorphism took place. Tectonic phases can be extensional or compressional in nature. When numerous subsequent compressional tectonic phases share the same geodynamic cause (usually some plate tectonic mechanism) this is called ...