Search results
Results from the WOW.Com Content Network
The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.
The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.
A very simple ferromagnetic structure A very simple antiferromagnetic structure A different simple antiferromagnetic arrangement in 2D. The term magnetic structure of a material pertains to the ordered arrangement of magnetic spins, typically within an ordered crystallographic lattice. Its study is a branch of solid-state physics.
Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .
The magnetic field (B, green arrow) of the magnet's North pole N is directed down in the −y direction. The magnetic field exerts a Lorentz force on the electron (pink arrow) of F 1 = −e(v × B), where e is the electron's charge. Since the electron has a negative charge, from the right hand rule this is directed in the +z direction.
Placing the magnet in an alternating magnetic field with intensity above the material's coercivity and then either slowly drawing the magnet out or slowly decreasing the magnetic field to zero. This is the principle used in commercial demagnetizers to demagnetize tools, erase credit cards, hard disks , and degaussing coils used to demagnetize ...
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
A coil without a magnetic core is called an "air core" coil. Adding a piece of ferromagnetic or ferrimagnetic material in the center of the coil can increase the magnetic field by hundreds or thousands of times; this is called a magnetic core. The field of the wire penetrates the core material, magnetizing it, so that the strong magnetic field ...