Search results
Results from the WOW.Com Content Network
An oxide (/ ˈ ɒ k s aɪ d /) is a chemical compound containing at least one oxygen atom and one other element [1] in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of –2) of oxygen, an O 2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials ...
4) ions can be found as such in various salts. Many oxyanions of elements in lower oxidation state obey the octet rule and this can be used to rationalize the formulae adopted. For example, chlorine(V) has two valence electrons so it can accommodate three electron pairs from bonds with oxide ions.
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula O − 2. [1] The systematic name of the anion is dioxide(1−).The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen O 2, which occurs widely in nature. [2]
The structure of sodium oxide has been determined by X-ray crystallography.Most alkali metal oxides M 2 O (M = Li, Na, K, Rb) crystallise in the antifluorite structure.In this motif the positions of the anions and cations are reversed relative to their positions in CaF 2, with sodium ions tetrahedrally coordinated to 4 oxide ions and oxide cubically coordinated to 8 sodium ions.
Ionic compounds containing hydrogen ions (H +) are classified as acids, and those containing electropositive cations [57] and basic anions ions hydroxide (OH −) or oxide (O 2−) are classified as bases. Other ionic compounds are known as salts and can be formed by acid–base reactions. [58]
Cations and anions are also typically discrete and can be depicted unambiguously. For simple structures, say <10 atoms, it is helpful to depict all atoms explicitly. For more complex molecules, most hydrogen atoms attached to carbon are omitted, and carbon atoms are represented by vertices.
The perovskite structure is frequently found for ternary oxides formed with one large (A) and one small cation (B). In this structure, there is a simple cubic array of B cations, with the A cations occupying the center of the cube, and the oxide atoms are sited at the center of the 12 edges of the simple cube. [8] [5] [6] [7]
Cu 2 O degrades to copper(II) oxide in moist air. Pourbaix diagram for copper in uncomplexed media (anions other than OH − not considered). Ion concentration 0.001 mol/kg water. Temperature 25 °C. Formation of copper(I) oxide is the basis of the Fehling's test and Benedict's test for reducing sugars.