Search results
Results from the WOW.Com Content Network
An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net. app for mobiles: Android or Apple - for PC use The Live Chart of Nuclides - IAEA ; Links to other charts of nuclides, including printed posters and journal articles, is available at nds.iaea.org
The Live Chart of Nuclides – IAEA Color-map of fission product yields, and detailed data by click on a nuclide. Periodic Table with isotope decay chain displays. Click on element, and then isotope mass number to see the decay chain (link to uranium 235).
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
An example of free Universal Nuclide Chart with decay information for over 3000 nuclides is available at Nucleonica.net. The LIVEChart of Nuclides - IAEA ; Links to other charts of nuclides, including printed posters and journal articles, is available at nds.iaea.org
English: Graph of isotopes by type of nuclear decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The unbroken line passing below many of the nuclides represents the theoretical position on the graph of nuclides for which proton number is the same as neutron number.
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.
Chart of nuclides by half life. Black squares represent nuclides with the longest half lives hence they correspond to the most stable nuclides. The most stable, long-lived nuclides lie along the floor of the valley of stability. Nuclides with more than 20 protons must have more neutrons than protons to be stable.
The first printed edition of the Karlsruhe Nuclide Chart of 1958 in the form of a wall chart was created by Walter Seelmann-Eggebert and his assistant Gerda Pfennig. Walter Seelmann-Eggebert was director of the Radiochemistry Institute in the 1956 founded "Kernreaktor Bau- und Betriebsgesellschaft mbH" in Karlsruhe, Germany (a predecessor institution of the later "(Kern-)Forschungszentrum ...