Search results
Results from the WOW.Com Content Network
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) (), (+) (), (+) ().In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence
Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic, now known as Ramanujan's congruences. For instance, whenever the decimal representation of n ends in the digit 4 or 9, the number of partitions of n will be divisible by 5.
The following notations are used to specify how many partitions have a given rank. Let n, q be a positive integers and m be any integer. The total number of partitions of n is denoted by p(n). The number of partitions of n with rank m is denoted by N(m, n). The number of partitions of n with rank congruent to m modulo q is denoted by N(m, q, n).
The more general Ramanujan–Petersson conjecture for holomorphic cusp forms in the theory of elliptic modular forms for congruence subgroups has a similar formulation, with exponent (k − 1)/2 where k is the weight of the form.
Let n be a non-negative integer and let p(n) denote the number of partitions of n (p(0) is defined to be 1).Srinivasa Ramanujan in a paper [3] published in 1918 stated and proved the following congruences for the partition function p(n), since known as Ramanujan congruences.
Among the 22 partitions of the number 8, there are 6 that contain only odd parts: 7 + 1; 5 + 3; 5 + 1 + 1 + 1; 3 + 3 + 1 + 1; 3 + 1 + 1 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1; Alternatively, we could count partitions in which no number occurs more than once. Such a partition is called a partition with distinct parts. If we count the ...
Modular form. modular group; Congruence subgroup; Hecke operator; Cusp form; Eisenstein series; Modular curve; Ramanujan–Petersson conjecture; Birch and Swinnerton-Dyer conjecture; Automorphic form; Selberg trace formula; Artin conjecture; Sato–Tate conjecture; Langlands program; modularity theorem
The Rogers–Ramanujan identities could be now interpreted in the following way. Let be a non-negative integer. The number of partitions of such that the adjacent parts differ by at least 2 is the same as the number of partitions of such that each part is congruent to either 1 or 4 modulo 5.