Search results
Results from the WOW.Com Content Network
In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
To estimate parameters of a conditional moment model, the statistician can derive an expectation function (defining "moment conditions") and use the generalized method of moments (GMM). However, there are infinitely many moment conditions that can be generated from a single model; optimal instruments provide the most efficient moment conditions.
In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]
Examples of variance structure specifications include independence, exchangeable, autoregressive, stationary m-dependent, and unstructured. The most popular form of inference on GEE regression parameters is the Wald test using naive or robust standard errors, though the Score test is also valid and preferable when it is difficult to obtain ...
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.
In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .
Lars Peter Hansen re-worked through the derivations and showed that it can be extended to general non-linear GMM in a time series context. [3] The Sargan test is based on the assumption that model parameters are identified via a priori restrictions on the coefficients, and tests the validity of over-identifying restrictions.