Search results
Results from the WOW.Com Content Network
For r < 1, exists outside [0, 1] as an unstable fixed point, but for r = 1, the two fixed points collide, and for r > 1, appears between [0, 1] as a stable fixed point. When the parameter r = 1, the trajectory of the logistic map converges to 0 as before , but the convergence speed is slower at r = 1 .
This function is unusual because it actually attains the limiting values of -1 and 1 within a finite range, meaning that its value is constant at -1 for all and at 1 for all . Nonetheless, it is smooth (infinitely differentiable, C ∞ {\displaystyle C^{\infty }} ) everywhere , including at x = ± 1 {\displaystyle x=\pm 1} .
The map function originated in functional programming languages. The language Lisp introduced a map function called maplist [3] in 1959, with slightly different versions already appearing in 1958. [4] This is the original definition for maplist, mapping a function over successive rest lists:
R indicates that the position will contain 0–9 if positive and {–R if negative. For example PICTURE 'Z99R' describes a four-character numeric field. The first position may be blank or will contain a digit 0–9. The next two positions will contain digits, and the fourth position will contain 0–9 for a positive number and {–R for ...
A variable or value of that type is usually represented as a fraction m/n where m and n are two integer numbers, either with a fixed or arbitrary precision.Depending on the language, the denominator n may be constrained to be non-zero, and the two numbers may be kept in reduced form (without any common divisors except 1).
Python supports normal floating point numbers, which are created when a dot is used in a literal (e.g. 1.1), when an integer and a floating point number are used in an expression, or as a result of some mathematical operations ("true division" via the / operator, or exponentiation with a negative exponent). Python also supports complex numbers ...
setx is idempotent because the second application of setx to 3 has the same effect on the system state as the first application: x was already set to 3 after the first application, and it is still set to 3 after the second application. A pure function is idempotent if it is idempotent in the mathematical sense. For instance, consider the ...
Intuitively, partial function application says "if you fix the first arguments of the function, you get a function of the remaining arguments". For example, if function div(x,y) = x/y, then div with the parameter x fixed at 1 is another function: div 1 (y) = div(1,y) = 1/y.