Search results
Results from the WOW.Com Content Network
A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram. A force on a non-rigid body is a bound vector. Some use the tail of the arrow to indicate ...
In the history of physics, a line of force in Michael Faraday's extended sense is synonymous with James Clerk Maxwell's line of induction. [1] According to J.J. Thomson, Faraday usually discusses lines of force as chains of polarized particles in a dielectric, yet sometimes Faraday discusses them as having an existence all their own as in stretching across a vacuum. [2]
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
Force is the action of one body on another. A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application (or point of contact). Thus, force is a vector quantity, because its effect depends ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
A single force acting at any point O′ of a rigid body can be replaced by an equal and parallel force F acting at any given point O and a couple with forces parallel to F whose moment is M = Fd, d being the separation of O and O′. Conversely, a couple and a force in the plane of the couple can be replaced by a single force, appropriately ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Starting at joint Aorda, the internal forces can be found by drawing lines in the Cremona diagram representing the forces in the members 1 and 4, going clockwise; V A (going up) load at A (going down), force in member 1 (going down/left), member 4 (going up/right) and closing with V A. As the force in member 1 is towards the joint, the member ...