enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    where the infinite product extends over all prime numbers p. [2] The Riemann hypothesis discusses zeros outside the region of convergence of this series and Euler product. To make sense of the hypothesis, it is necessary to analytically continue the function to obtain a form that is valid for all complex s.

  3. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    An important paper concerning the distribution of prime numbers was Riemann's 1859 ... formula is one of ... in algebraic number fields. Riemann hypothesis;

  4. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Our understanding of prime numbers has flourished in the 160 years since, and Riemann would never have imagined the power of supercomputers. But lacking a solution to the Riemann Hypothesis is a ...

  6. Proof of the Euler product formula for the Riemann zeta ...

    en.wikipedia.org/wiki/Proof_of_the_Euler_product...

    The method of Eratosthenes used to sieve out prime numbers is employed in this proof. This sketch of a proof makes use of simple algebra only. This was the method by which Euler originally discovered the formula. There is a certain sieving property that we can use to our advantage:

  7. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    In this sense, the zeros control how regularly the prime numbers are distributed. If the Riemann hypothesis is true, these fluctuations will be small, and the asymptotic distribution of primes given by the prime number theorem will also hold over much shorter intervals (of length about the square root of for intervals near a number ).

  8. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  9. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    For example, π(10) = 4 because there are four prime numbers (2, 3, 5 and 7) less than or equal to 10. The prime number theorem then states that x / ln(x) is a good approximation to π(x), in the sense that the limit of the quotient of the two functions π(x) and x / ln(x) as x approaches infinity is 1: