Search results
Results from the WOW.Com Content Network
Arbitrary-precision arithmetic can also be used to avoid overflow, which is an inherent limitation of fixed-precision arithmetic. Similar to an automobile's odometer display which may change from 99999 to 00000, a fixed-precision integer may exhibit wraparound if numbers grow too large to represent at the fixed level of precision.
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...
GNU Multi-Precision Library is a library for doing arbitrary-precision arithmetic. hypre (High Performance Preconditioners) is an open-source library of routines for scalable ( parallel ) solution of linear systems and preconditioning.
mpmath: a Python library for arbitrary-precision floating-point arithmetic [15] SympyCore: another Python computer algebra system [16] SfePy: Software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 1D, 2D and 3D. [17] GAlgebra: Geometric algebra module (previously sympy.galgebra). [18]
Class Library for Numbers (CLN) is a free library for arbitrary precision arithmetic. It operates on signed integers, rational numbers, floating point numbers, complex numbers, modular numbers, and univariate polynomials. Its implementation programming language is C++.
Mathomatic [2] is a free, portable, general-purpose computer algebra system (CAS) that can symbolically solve, simplify, combine and compare algebraic equations, and can perform complex number, modular, and polynomial arithmetic, along with standard arithmetic.
MPFR is dependent upon the GNU Multiple Precision Arithmetic Library (GMP). MPFR is needed to build the GNU Compiler Collection (GCC). [7] Other software uses MPFR, such as ALGLIB, CGAL, FLINT, GNOME Calculator, the Julia language implementation, the Magma computer algebra system, Maple, GNU MPC, and GNU Octave.