Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
This page was last edited on 12 October 2018, at 17:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.
Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space.
A more general class of regression-based multi-fidelity methods are Bayesian approaches, e.g. Bayesian linear regression, [3] Gaussian mixture models, [10] [11] Gaussian processes, [12] auto-regressive Gaussian processes, [2] or Bayesian polynomial chaos expansions.
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.
Commonly, methods for modeling complex distributions rely on parametric assumptions that may be unfounded or computationally challenging (e.g. Gaussian mixture models), while nonparametric methods like kernel density estimation (Note: the smoothing kernels in this context have a different interpretation than the kernels discussed here) or ...