Search results
Results from the WOW.Com Content Network
Irreversible covalent – a chemical bond is formed in which the product is thermodynamically much more stable than the reactants such that the reverse reaction does not take place. Bound molecules are sometimes called a "molecular complex"—the term generally refers to non-covalent associations. [2]
The Staudinger ligation of azides and phosphine has been used extensively in field of chemical biology. Because it is able to form a stable amide bond in living cells and animals, it has been applied to modification of cell membrane, in vivo imaging, and other bioconjugation studies. [24] [25] [26] [27]
Glucose binds to hexokinase in the active site at the beginning of glycolysis. In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. [1]
Hydrogen bonds contribute to the stability of ion pairs with e.g. protonated ammonium ions, and with anions is formed by deprotonation as in the case of carboxylate, phosphate etc; then the association constants depend on the pH. Entropic driving forces for ion pairing (in absence of significant H-bonding contributions) are also found in ...
In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site.
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects.
Measurably irreversible covalent bonding between a ligand and target molecule is atypical in biological systems. In contrast to the definition of ligand in metalorganic and inorganic chemistry , in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin .
Chemical specificity is the ability of binding site of a macromolecule (such as a protein) to bind specific ligands. The fewer ligands a protein can bind, the greater its specificity. The fewer ligands a protein can bind, the greater its specificity.