Search results
Results from the WOW.Com Content Network
The hydroxyl radical can damage virtually all types of macromolecules: carbohydrates, nucleic acids , lipids (lipid peroxidation) and amino acids (e.g. conversion of Phe to m-Tyrosine and o-Tyrosine). The hydroxyl radical has a very short in vivo half-life of approximately 10 −9 seconds and a high reactivity. [5]
Hydroxyl radical (HO·) is generated by Fenton reaction of hydrogen peroxide with ferrous compounds and related reducing agents: Fe(II) + H 2 O 2 → Fe(III)OH + HO· In its fleeting existence, the hydroxyl radical reacts rapidly irreversibly with all organic compounds. superoxide (O − 2) is produced by reduction of O 2. [4]
The hydroxyl radical, Lewis structure shown, contains one unpaired electron. Lewis dot structure of a Hydroxide ion compared to a hydroxyl radical. In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron.
In chemistry, a hydroxy or hydroxyl group is a functional group with the chemical formula −OH and composed of one oxygen atom covalently bonded to one hydrogen atom. In organic chemistry , alcohols and carboxylic acids contain one or more hydroxy groups.
The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.
The fact that oxygen changes the radiation chemistry might be one reason why oxygenated tissues are more sensitive to irradiation than the deoxygenated tissue at the center of a tumor. The free radicals, such as the hydroxyl radical, chemically modify biomolecules such as DNA, leading to damage such as breaks in the DNA strands. Some substances ...
Hydroxide is a diatomic anion with chemical formula OH −. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst.
Ultimately, both reactions generate hydroxyl radicals. These radicals are oxidative in nature and nonselective with a redox potential of E 0 = +3.06 V. [24] This is significantly greater than many common organic compounds, which typically are not greater than E 0 = +2.00 V. [25] This results in the non-selective oxidative behavior of these ...