Search results
Results from the WOW.Com Content Network
The array of cells of the automaton has two dimensions. Each cell of the automaton has two states (conventionally referred to as "alive" and "dead", or alternatively "on" and "off") The neighborhood of each cell is the Moore neighborhood; it consists of the eight adjacent cells to the one under consideration and (possibly) the cell itself.
Conway's Game of Life is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same Moore neighborhood structure as Life are sometimes called life-like cellular automata. [52] [53]
The number of live cells per generation of the pattern shown above demonstrating the monotonic nature of Life without Death. Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway ...
The primary use of the chemoton model is in the study of the chemical origin of life. This is because the chemoton itself can be thought of as a primitive or minimal cellular life as it satisfies the definition of what a cell is (that it is a unit of biological activity enclosed by a membrane and capable of self-reproduction).
Even though all live cells are constantly dying, the small birth requirement of two cells means that nearly every pattern in Seeds explodes into a chaotic mess that grows to cover the entire universe. Thus, in Wolfram's classification of cellular automata, it is a Class III automaton, in which nearly all patterns evolve chaotically. [1]
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2]
As in Conway's Game of Life, at any point in time each cell may be in one of two states: alive or dead. The Critters rule is a block cellular automaton using the Margolus neighborhood. This means that, at each step, the cells of the automaton are partitioned into 2 × 2 blocks and each block is updated independently of the other blocks.
The cells outside the image are all dead (white). An orphan in Life found by Achim Flammenkamp. Black squares are required live cells; blue x's are required dead cells. In a cellular automaton, a Garden of Eden is a configuration that has no predecessor.