enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  3. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    The simplest one is Naive Bayes classifier. [2] Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different.

  4. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  5. Additive smoothing - Wikipedia

    en.wikipedia.org/wiki/Additive_smoothing

    The simplest approach is to add one to each observed number of events, including the zero-count possibilities. This is sometimes called Laplace's rule of succession . This approach is equivalent to assuming a uniform prior distribution over the probabilities for each possible event (spanning the simplex where each probability is between 0 and 1 ...

  6. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    A strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire answered the question in the affirmative in a paper published in 1990. [ 5 ] This has had significant ramifications in machine learning and statistics , most notably leading to the development of boosting.

  7. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are

  8. Bayesian classifier - Wikipedia

    en.wikipedia.org/wiki/Bayesian_classifier

    In computer science and statistics, Bayesian classifier may refer to: any classifier based on Bayesian probability; a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier

  9. WordStat - Wikipedia

    en.wikipedia.org/wiki/WordStat

    Classification of documents using Naïve-Bayes or k-nearest neighbor algorithms applied either on words or concepts. Automatic topic extraction using first order (word co-occurrences) or second order (co-occurrence profiles) hierarchical clustering and multidimensional scaling. Topic modeling to extract the main themes using NNMF and Factor ...