enow.com Web Search

  1. Ads

    related to: generalization of a triangle practice questions free

Search results

  1. Results from the WOW.Com Content Network
  2. Lester's theorem - Wikipedia

    en.wikipedia.org/wiki/Lester's_theorem

    In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points.

  3. Generalized trigonometry - Wikipedia

    en.wikipedia.org/wiki/Generalized_trigonometry

    Ordinary trigonometry studies triangles in the Euclidean plane ⁠ ⁠.There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions [broken anchor], definitions via differential equations [broken anchor], and definitions using functional equations.

  4. Graph removal lemma - Wikipedia

    en.wikipedia.org/wiki/Graph_removal_lemma

    The special case in which the subgraph is a triangle is known as the triangle removal lemma. [2] The graph removal lemma can be used to prove Roth's theorem on 3-term arithmetic progressions, [3] and a generalization of it, the hypergraph removal lemma, can be used to prove Szemerédi's theorem. [4] It also has applications to property testing. [5]

  5. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    Second generalization: Let a conic S and a point P on the plane. Construct three lines d a , d b , d c through P such that they meet the conic at A, A'; B, B' ; C, C' respectively. Let D be a point on the polar of point P with respect to (S) or D lies on the conic (S).

  6. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  7. Isogonal conjugate - Wikipedia

    en.wikipedia.org/wiki/Isogonal_conjugate

    In May 2021, Dao Thanh Oai gave a generalization of the isogonal conjugate as follows: [2] Let ABC be a triangle, P a point on its plane and Ω an arbitrary circumconic of ABC. Lines AP, BP, CP cut again Ω at A', B', C' respectively, and parallel lines through these points to BC, CA, AB cut Ω again at A", B", C" respectively.

  8. Games on AOL.com: Free online games, chat with others in real ...

    www.aol.com/games/play/masque-publishing/astralume

    Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a line segment,

  1. Ads

    related to: generalization of a triangle practice questions free