enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    The definition of independence may be extended from random vectors to a stochastic process. Therefore, it is required for an independent stochastic process that the random variables obtained by sampling the process at any times , …, are independent random variables for any .

  3. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  4. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome will not affect the other outcome (for from 1 to 10), which means the variables , …, are independent of each other. Identically distributed : Regardless of whether the coin is fair (with a probability of 1/2 for heads) or biased, as long as the same coin is used for each flip, the probability of getting heads remains ...

  5. Variable (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Variable_(mathematics)

    For example, in the notation f(x, y, z), the three variables may be all independent and the notation represents a function of three variables. On the other hand, if y and z depend on x (are dependent variables) then the notation represents a function of the single independent variable x. [20]

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  7. Conditional independence - Wikipedia

    en.wikipedia.org/wiki/Conditional_independence

    In that model, the random variables X 1, ..., X n are not independent, but they are conditionally independent given the value of p. In particular, if a large number of the X s are observed to be equal to 1, that would imply a high conditional probability , given that observation, that p is near 1, and thus a high conditional probability , given ...

  8. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Therefore, the variance of the mean of a large number of standardized variables is approximately equal to their average correlation. This makes clear that the sample mean of correlated variables does not generally converge to the population mean, even though the law of large numbers states that the sample mean will converge for independent ...

  9. Mean dependence - Wikipedia

    en.wikipedia.org/wiki/Mean_dependence

    The concept of mean independence is often used in econometrics [citation needed] to have a middle ground between the strong assumption of independent random variables and the weak assumption of uncorrelated random variables (⁡ (,) =).