Search results
Results from the WOW.Com Content Network
The cutoff frequency is the critical frequency between propagation and attenuation, which corresponds to the frequency at which the longitudinal wavenumber is zero. It is given by ω c = c ( n π a ) 2 + ( m π b ) 2 {\displaystyle \omega _{c}=c{\sqrt {\left({\frac {n\pi }{a}}\right)^{2}+\left({\frac {m\pi }{b}}\right)^{2}}}} The wave equations ...
Alpha cutoff frequency, or is the frequency at which the common base DC current gain drops to 0.707 of its low frequency value. The common base DC current gain is the ratio of a transistor's collector current to the transistor's emitter current , or α = i C i E {\displaystyle \alpha ={\frac {i_{C}}{i_{E}}}} .
Cutoff frequency is the frequency beyond which the filter will not pass signals. It is usually measured at a specific attenuation such as 3 dB. Roll-off is the rate at which attenuation increases beyond the cut-off frequency. Transition band, the (usually narrow) band of frequencies between a passband and stopband.
The half-power point is the point at which the output power has dropped to half of its peak value; that is, at a level of approximately −3 dB. [1] [a]In filters, optical filters, and electronic amplifiers, [2] the half-power point is also known as half-power bandwidth and is a commonly used definition for the cutoff frequency.
As an example, a telescope having an f /6 objective and imaging at 0.55 micrometers has a spatial cutoff frequency of 303 cycles/millimeter. High-resolution black-and-white film is capable of resolving details on the film as small as 3 micrometers or smaller, thus its cutoff frequency is about 150 cycles/millimeter.
In electronics, cut-off is a state of negligible conduction that is a property of several types of electronic components when a control parameter (that usually is a well-defined voltage or electric current, but could also be an incident light intensity or a magnetic field), is lowered or increased past a value (the conduction threshold).
The Debye frequency (Symbol: or ) is a parameter in the Debye model that refers to a cut-off angular frequency for waves of a harmonic chain of masses, used to describe the movement of ions in a crystal lattice and more specifically, to correctly predict that the heat capacity in such crystals is constant at high temperatures (Dulong–Petit ...
The cutoff attenuation for Butterworth filters is usually defined to be −3.01 dB. If it is desired to use a different attenuation at the cutoff frequency, then the following factor may be applied to each pole, whereupon the poles will continue to lie on a circle, but the radius will no longer be unity. [8]