Search results
Results from the WOW.Com Content Network
A. Morula and B. cross section of a blastula displaying the blastocoel and blastoderm of early animal embryonic development. Blastulation is the stage in early animal embryonic development that produces the blastula. In mammalian development, the blastula develops into the blastocyst with a differentiated inner cell mass and an outer trophectoderm.
Fish embryos go through a process called mid-blastula transition which is observed around the tenth cell division in some fish species. Once zygotic gene transcription starts, slow cell division begins and cell movements are observable. [4] During this time three cell populations become distinguished. The first population is the yolk syncytial ...
At least four initial cell divisions occur, resulting in a dense ball of at least sixteen cells called the morula. In the early mouse embryo, the sister cells of each division remain connected during interphase by microtubule bridges. [7] The different cells derived from cleavage, up to the blastula stage, are called blastomeres.
An oocyte with poles depicted. In developmental biology, an embryo is divided into two hemispheres: the animal pole and the vegetal pole within a blastula.The animal pole consists of small cells that divide rapidly, in contrast with the vegetal pole below it.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The blastomeres (4-cell stage) are arranged as a solid ball that when reaching a certain size, called a morula, (16-cell stage) takes in fluid to create a cavity called a blastocoel. The structure is then termed a blastula, or a blastocyst in mammals. The mammalian blastocyst hatches before implantating into the endometrial lining of the womb.
During this stage, the embryo is referred to as a blastula. The series of changes to the blastula that characterize the midblastula transition include activation of zygotic gene transcription, slowing of the cell cycle, increased asynchrony in cell division, and an increase in cell motility.
The morula then develops by cavitation to become the blastocyst, or in many other animals the blastula. Cell differentiation then further commits the morula's cells into two types: trophectoderm cells that surround the lumen and the inner mass of cells (the embryoblast). The inner cell mass is at the origin of embryonic stem cells. [15]