enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Good Economics for Hard Times - Wikipedia

    en.wikipedia.org/wiki/Good_Economics_for_Hard_Times

    Good Economics for Hard Times: Better Answers to Our Biggest Problems. United States: PublicAffairs. November 12, 2019. ISBN 978-1-61039-950-0. 432 pages. [3] Good Economics for Hard Times: Better Answers to Our Biggest Problems. India: Juggernaut Books. November 12, 2019. ISBN 9789353450700. 416 pages. [15]

  3. Computers and Intractability - Wikipedia

    en.wikipedia.org/wiki/Computers_and_Intractability

    Soon after it appeared, the book received positive reviews by reputed researchers in the area of theoretical computer science. In his review, Ronald V. Book recommends the book to "anyone who wishes to learn about the subject of NP-completeness", and he explicitly mentions the "extremely useful" appendix with over 300 NP-hard computational problems.

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Informally, an NP-complete problem is an NP problem that is at least as "tough" as any other problem in NP. NP-hard problems are those at least as hard as NP problems; i.e., all NP problems can be reduced (in polynomial time) to them. NP-hard problems need not be in NP; i.e., they need not have solutions verifiable in polynomial time.

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...

  6. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine. [2] [Note 1]

  7. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The partition problem is NP hard. This can be proved by reduction from the subset sum problem. [6] An instance of SubsetSum consists of a set S of positive integers and a target sum T; the goal is to decide if there is a subset of S with sum exactly T.

  8. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.

  9. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . [ 1 ]