Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
The role of symmetry in grouping and figure/ground organization has been confirmed in many studies. For instance, detection of reflectional symmetry is faster when this is a property of a single object. [29] Studies of human perception and psychophysics have shown that detection of symmetry is fast, efficient and robust to perturbations.
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object
In forming the stellar structure equations (exploiting the assumed spherical symmetry), one considers the matter density (), temperature (), total pressure (matter plus radiation) (), luminosity (), and energy generation rate per unit mass () in a spherical shell of a thickness at a distance from the center of the star.
The known elementary particles respect rotation and translation symmetry but do not respect mirror reflection symmetry (also called P-symmetry or parity). Of the four fundamental interactions — electromagnetism , the strong interaction , the weak interaction , and gravity —only the weak interaction breaks parity.
Finite reflection groups are the point groups C nv, D nh, and the symmetry groups of the five Platonic solids. Dual regular polyhedra (cube and octahedron, as well as dodecahedron and icosahedron) give rise to isomorphic symmetry groups. The classification of finite reflection groups of R 3 is an instance of the ADE classification.