Search results
Results from the WOW.Com Content Network
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
If mass density is ρ, the mass of the parcel is density multiplied by its volume m = ρA dx. The change in pressure over distance d x is d p and flow velocity v = d x / d t . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is − A d p .
A classical particle under the influence of a force accelerates according to Newton's second law, a = m −1 F, or alternatively, the momentum changes according to d / dt p = F. This intuitive principle appears identically in semiclassical approximations derived from band structure when interband transitions can be ignored for ...
Assuming conservation of mass, with the known properties of divergence and gradient we can use the mass continuity equation, which represents the mass per unit volume of a homogenous fluid with respect to space and time (i.e., material derivative) of any finite volume (V) to represent the change of velocity in fluid media ...
In this expression m is the particle mass and h is the Planck constant. For a monatomic ideal gas U = 3 / 2 nRT = nC V T, with C V the molar heat capacity at constant volume. A second way to evaluate the entropy change is to choose a route from the initial state to the final state where all the intermediate states are in equilibrium.
Suppose that a weight of mass m has been placed on top of the cylinder. It presses down on the top of the cylinder with a force of mg where g is the acceleration due to gravity. Suppose that x is smaller than its equilibrium value. The upward force of the gas is greater than the downward force of the weight, and if allowed to freely move, the ...
The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...