Search results
Results from the WOW.Com Content Network
Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.
Scheme of molecular diffusion in the solution. Orange dots are solute molecules, solvent molecules are not drawn, black arrow is an example random walk trajectory, and the red curve is the diffusive Gaussian broadening probability function from the Fick's law of diffusion. [12]:Fig. 9
Finally there is configurational diffusion, which happens if the molecules have comparable size to that of the pore. Under this condition, the diffusivity is much lower compared to molecular diffusion and small differences in the kinetic diameter of the molecule cause large differences in diffusivity.
Diffusion is the dominant mechanism in the process of dispersion in cases of little to no turbulence in the bulk, where molecular diffusion is able to facilitate dispersion over a long period of time. [4] These phenomena are reflected in common real-world events.
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurately, the diffusion coefficient times the local concentration is the proportionality constant between ...
Molecular diffusion occurs in gases, liquids, and solids. Diffusion is a result of thermal motion of molecules. Usually, convection occurs as a result of the diffusion process. The rate at which diffusion occurs depends on the state of the molecules: it occurs at a high rate in gases, a slower rate in liquids, and an even slower rate in solids.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.